How to model a conic using five points: A classroom experience

Authors

DOI:

https://doi.org/10.65685/amiutem.v13i2.272

Keywords:

Teaching experience, conic sections, Gauss-Jordan, GeoGebra

Abstract

This paper presents a didactic experience involving six second-semester students enrolled in the Bachelor’s Degree in Applied Mathematics program in the Analytical Geometry course at a university in northern Mexico. Aiming to give greater meaning to the topic of conic sections, the students were assigned a project that required them to develop a mathematical model representing a conic. The experience was framed within an action research methodological approach. As part of the assignment, studenwwts modeled objects with conic shapes using three different processes: one using GeoGebra software tools, another using the quadrilateral method, and a third based on linear algebra techniques. The main outcomes revealed a significant departure from the traditional classroom model: the instructor adopted a more supportive and advisory role, students showed increased interest in completing the tasks, and communication between teacher and students improved, enabling more continuous and effective feedback. Collectively, these actions encouraged students to reflect on their own learning processes and become more aware of their academic needs.

 

Downloads

Download data is not yet available.

References

1. Calculadora virtual: onlineMschool.com

2. Chavarriaga, O. y Torres, J. (2017). Estudio de las secciones cónicas a través de la geometría dinámica. Tesis doctoral no publicada, Universidad Pontificia Bolivariana. Repositorio Institucional UPB. repository.upb.edu.co

3. Costa, C. (2015). As cônicas na geometria do táxi [Artículo académico]. Ciência e Natura, 37(3), 179–191.

4. Duval, R. (1999). Semiosis y pensamiento humano: registros semióticos y aprendizajes intelectuales. Traducción (2006) de la Universidad del Valle, Cali

5. García, G. (2024). “Ingeniería didáctica” como metodología de enseñanza de cónicas en el desarrollo de capacidades geométricas para resolver problemas contextualizados de estudiantes de arquitectura. Tesis doctoral no publicada, Universidad Femenina del Sagrado Corazón.

6. GeoGebra en www.geogebra.org

7. Giraldo, M. (2025). Innovación en un instituto de educación secundaria a través de entornos virtuales y tecnologías conversacionales: una investigación-acción para fomentar la autonomía del alumnado y la personalización de los procesos de enseñanza-aprendizaje de las matemáticas. Tesis doctoral. Universidad de Valladolid. España.

8. Guevara, G., Verdesoto, A. y Castro, N. (2020). Metodologías de investigación educativa (des¬criptivas, experimentales, participativas y de investigación-acción). Recimundo, 4(3), 163-173.

9. Latorre, A. (2003). La investigación-acción: Conocer y cambiar la práctica educativa. Graó.

10. Miller, M. E., & Johnson, C. L. (2021). The impact of technology integration on the teaching and learning of conic sections. Journal of Technology in Mathematics Education, 8(1), 45-60. https://doi.org/10.1080/24725854.2021.1881543

11. Salas, M. Hille, C. Etgen, G. (2003). Calculus. Barcelona: Reverté.

12. Torres, R. A., & García, A. M. (2023). Teaching conic sections through inquiry-based learning: Insights from a classroom study. Educational Studies in Mathematics, 112(3), 345-361. https://doi.org/10.1007/s10649-023-10234-7

13. Ulson, K. (2024). Using Graphing Application in Illustrating the Conic Sections: Its Effect on Student’s Performance. International Journal of Humanities and Education Development (IJHED), 6(3), 1–7. https://doi.org/10.22161/jhed.6.3.1

14. Vigil, J. (2021). Estudio de investigación-acción sobre la aplicación del modelo Flipped Classroom en las asignaturas de Matemáticas II y Matemáticas aplicadas a las Ciencias Sociales II de 2º de Bachillerato. Pulso: revista de educación, (44), 109-128.

Published

2025-12-30

How to Cite

Londoño Millán, N., Mederos Madrazo, M., & Kakes Cruz, A. (2025). How to model a conic using five points: A classroom experience. Revista AMIUTEM, 13(2), 46–54. https://doi.org/10.65685/amiutem.v13i2.272

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.