Fractals in GeoGebra

Authors

  • Efraín de la Rosa Dávila Centro de Bachillerato Tecnológico Industrial y de Servicios (CBTis) No. 121
  • Salvador Colima Rodríguez Centro de Bachillerato Tecnológico Industrial y de Servicios (CBTis) No. 121
  • Edgar Armando Torres Báez Centro de Bachillerato Tecnológico Industrial y de Servicios (CBTis) No. 121

DOI:

https://doi.org/10.65685/amiutem.v13i2.276

Keywords:

Self-similarity, Fractal, Iteration, Homothety

Abstract

As part of the Temas Selectos de Matemáticas I course, corresponding to the 5th semester of the MCCEMS 2023 program, an activity focused on constructing fractals using the GeoGebra platform was carried out in High School. Students were given a detailed explanation of the technique for creating a new tool within the program, based on an initial figure. This tool can be invoked whenever needed, allowing a pattern to be repeated in a controlled manner. The main objective was to demonstrate how this repetition of patterns through the tool enables the construction of figures with self- similarity, an essential characteristic of every fractal. To achieve this, students worked with geometric transformations such as homothety, which allows figures to be scaled proportionally and applied iteration processes, repeating the base figure at different scales and positions.

Downloads

Download data is not yet available.

References

1. Duval, R. (1988). Graphiques et équations: L’articulation de deux registres. Annales de Didactique et de Sciences Cognitives, 1, p. 235–253.

2. Duval, R. (1993). Registres de représentations sémiotiques et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, 5, p. 37–65.

3. Falconer, K. J. (2003). Fractal geometry: Mathematical foundations and applications (2nd ed.). John Wiley & Sons

4. Gutiérrez, J., & Montes, A. (2005). Fractales: una herramienta para el desarrollo del pensamiento geométrico. Revista Educación Matemática, 17(3), p. 55–77.

5. Mandelbrot, B. B. (1982). The fractal geometry of nature. W. H. Freeman and Company.

6. Peitgen, H.-O., Jürgens, H., & Saupe, D. (2004). Chaos and fractals: New frontiers of science (2nd ed.). Springer.

7. Piaget, J. (1970). La psicología de la inteligencia. Buenos Aires, Argentina: Paidós

Published

2025-12-30

How to Cite

de la Rosa Dávila, E., Colima Rodríguez, S., & Torres Báez, E. A. (2025). Fractals in GeoGebra . Revista AMIUTEM, 13(2), 70–75. https://doi.org/10.65685/amiutem.v13i2.276