ASPECTOS NECESARIOS A CONSIDERAR EN LA DEFINICIÓN DE DERIVADA

Graciela Eréndira Núñez Palenius, José Carlos Cortés Zavala

Resumen


En este trabajo se presenta el diseño de actividades de aprendizaje con un enfoque constructivista, con las que se pretende conceptualizar la definición de Derivada con el uso de una calculadora TI-Nspire CX CAS. En estas actividades se aprovechan las diferentes formas de representación de una función, poniendo énfasis en el significado de varios conceptos básicos que existen en la definición de la Derivada.


Palabras clave


Cálculo Diferencial, Mediación por Tecnología, CAS

Texto completo:

PDF

Referencias


Anton, H., Bivens, I. y Davis, S., (2009). Calculus Early Transcendentals (9e ed.). Hoboken, NJ: John Wiley & Sons, INC.

Artigue, M. (2002). Learning Mathematics in a CAS Enviroment: The Genesis of a Reflection About Instrumentation and The Dialectics Between Technical and Conceptual Work. International Journal of Computers for Mathematical Learning, 7, 245-274.

Atkins, N., Creegan, A. y Soan, P. (1995). You can lead students to DERIVE, but can you make them think? International DERIVE Journal, 2(1), 63-82.

Cortés, C. y Núñez, E. (en evaluación). Aprendizaje de conceptos de cálculo diferencial a través de actividades. Revista Unión, España 2016.

Cortés, C., Núñez, E. y Morales, C. (2015). Actividades de aprendizaje algebraicas, usando la calculadora TI-Nspire™ CX CAS en un ambiente de aprendizaje. Revista de la Asociación Mexicana de Investigadores del Uso de Tecnología en Educación Matemática, vol III No. 2. Pág. 1-10. Recuperado de http://revista.amiutem.edu.mx

Chevallard, Y. (1999). L'analyse des pratiques enseignantes en théorie anthropologique du didactiqu. Recherches en Didactique des Mathématiques, 19, 221-266.

Duval, R. (1993). Registres de Représentation sémiotique et fonctionnement cognitif de la pensé. Annales de Didactique et de Sciences Cognitives, 5, 37-65.

Duval, R. (1995). Sémiosis et Pensée Humaine. Berne: Peter Lang.

Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, 61, 103-131.

Gijbels, D., van de Watering, G., Dochy, F., y van den

Bossche, P. (2006). New learning enviroments and constructivism: The students' perspective. Instructional Science, 34, 213-226.

Goldenberg, E. (1987). Believing is seeing: How preconceptions influence the preceptions of graphs. Proceedings of the 11th Conference of the International Group for the Psychology of Mathematics, Vol 1. Montreal, pp. 197-204.

Guin, D., y Trouche, L. (1999). The complex process of converting tools into mathematical instruments: the case of calculators. International Journal of Computers for Mathematical Learning, 3, 195-227.

Gravemeijer, K. P. E., Cobb, P., Bowers, J., y Whitenack, J. (2000). Symbolizing, Modeling, and Instructional Design. En P. Cobb, E. Yackel, K. McClain (eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design, p. 225-273. Mahwah, NJ: Lawrence Erlbaum Associates.

Hass, J., Weir, M. B. y Thomas, G. B. (2009). University Calculus:Early Transcendentals (2e ed.). Upper Saddle River, NJ: Pearson.

Heid, M. K. (1988). Resequencing skills and concepts in applied calculus using the computer as a tool. Journal for Research in Mathematics Education, 19(1), 3-25.

Hernández, S. (2008). El modelo constructivista con las nuevas tecnologías: aplicado en el proceso de aprendizaje. Revista de Universidad y Sociedad del Conocimiento, 5 (2), 26-35. doi: http://dx.doi.org/10.7238/rusc.v5i2.335

Hillel, J., Lee, L., Laborde, C. y Linchevski, L. (1992). Base functions through the lens of computer alegbra systems. Journal of Mathematical Behaviour, 11, 119-158.

Kieran, C., y Saldanha, L. (2008). Designing tasks for the codevelopment of conceptual and technical knowledge in CAS activity: An example from factoring. En G. W. Blume y M. K. Heid (eds.), Research on technology and the teaching and learning of mathematics: Vol. 2 cases, and perspectives (pp. 393-414). Charlotte, NC: Information Age Publishing.

Kuhn, D. (2007). Is direct instruction an answer to the right questions? Educational Psychologist, 42, 109-113.

Kutzler, B. (1994). DERIVE – the future of teaching mathematics. International DERIVE Journal, 1(1), 37-48.

Lagrange, J. B. (2000). L'Intégration d'Instruments Informatiques dans l'Enseignement: une Approche par les Techniques. Educational Studies in Mathematics, 43(1), 1-30.

Lagrange, J. B. (2003). Learning techniques and concepts using CAS: A practical and theoretical reflection. En J. T. Fey (ed.), Computer Algebra Systems in secondary school mathematics education (pp. 269-283). Reston, VA: Nationa Council of Teachers of Mathematics.

Larson, R. Y Edwards, B. H. (2010). Calculus (9e ed.). Belmont, CA: Brooks/Cole.

Monaghan, J. (2007). Computer algebra, instrumentation and the anthropological approach. The International Journal for Technology in Mathematics Education, 14(2), 63-72.

Phillips, D.C. (1998). How, why, what, when, and where: Prespectives on constructivism in psychology and education. Issues in Educaction, 3, 151-194.

Pierce, R. (1999). Using CAS as a scaffolding for calculus: Some observations. En W. Spunde, P. Cretchley y R. Hubbard (eds.), The Challenge of Diversity: Proceedings of the Delta-99 Symposium on Undergraduate Mathematics (pp. 172-176). Brisbane: Delta 99 Committee.

Stewart, J., (2008). Calculus Early Transcendentals (6e ed.). Belmont, CA: Thomson Higher Education.

Taber, K. S. (2006). Beyond Constructivism: the Progressive Research Programme into Learning Science. Studies in Science Education, 42, 125-184.

Tan, S. T., (2011). Calculus: Early Transcendentals. Belmont, CA: Brooks/Cole.

Vérillon, P. y Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77-101.